

Workout

Question 1: For each equation, complete the table of values and draw its graph for values of x from -1 to 3 .

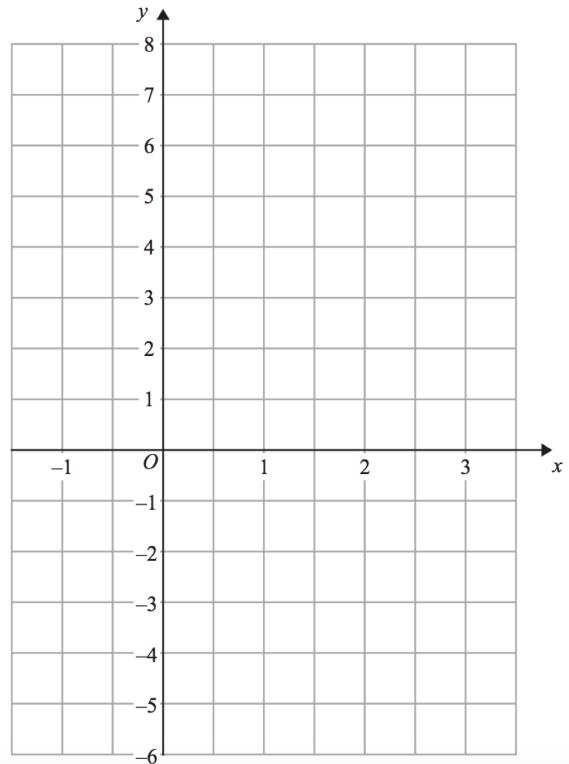
(a) $y = 2x + 1$

x	-1	0	1	2	3
y	-1	1			7

(b) $y = 3x - 1$

x	-1	0	1	2	3
y	-4			5	

(c) $y = 2x - 3$

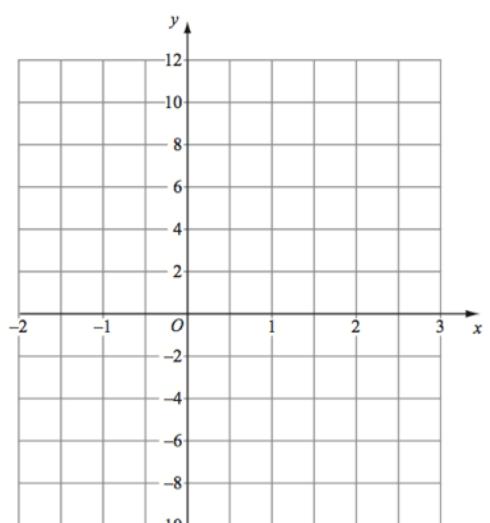

x	-1	0	1	2	3
y		-3	-1		

(d) $y = x + 4$

x	-1	0	1	2	3
y					7

(e) $y = 2x$

x	-1	0	1	2	3
y		0			6


Question 2: For each equation, complete the table of values and draw its graph for values of x from -2 to 3 .

(a) $y = 2x + 4$

x	-2	-1	0	1	2	3
y						

(b) $y = 4x - 2$

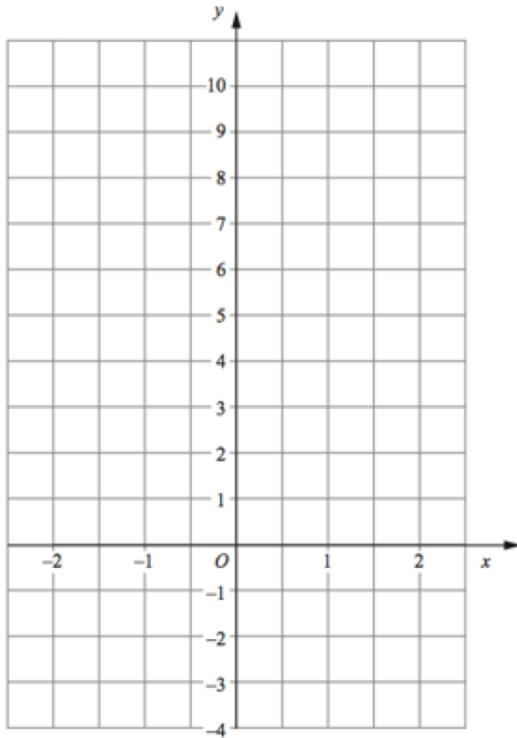
x	-2	-1	0	1	2	3
y						

Question 3: For each equation, complete the table of values and draw its graph for values of x from -2 to 2 .

(a) $y = 3x + 3$

x	-2	-1	0	1	2
y					

(b) $y = x + 9$


x	-2	-1	0	1	2
y					

(c) $y = x - 2$

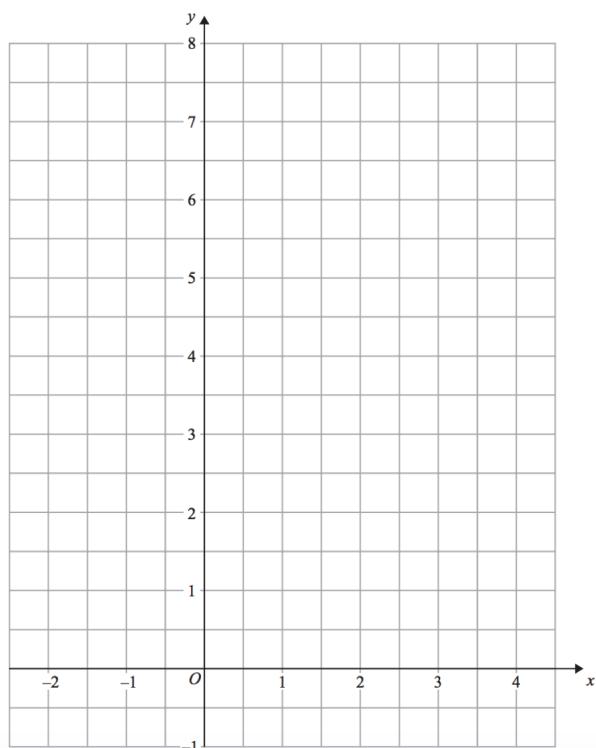
x	-2	-1	0	1	2
y					

(d) $y = x$

x	-2	-1	0	1	2
y					

Question 4: For each equation, complete the table of values and draw its graph for values of x from -2 to 4 .

(a) $y = \frac{1}{2}x + 1$


x	-2	-1	0	1	2	3	4
y							

(b) $y = \frac{1}{4}x + 5$

x	-2	-1	0	1	2	3	4
y							

(c) $y = \frac{1}{3}x + 1$

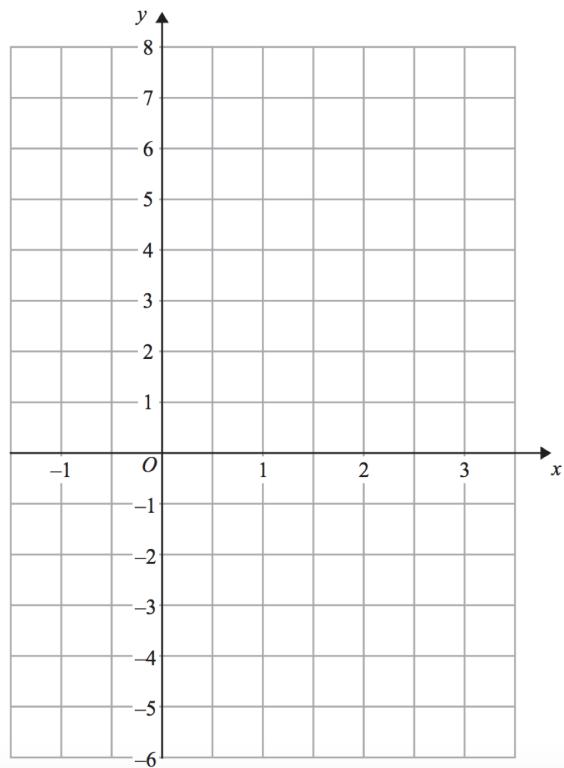
x	-2	-1	0	1	2	3	4
y							

Question 5: For each equation, complete the table of values and draw its graph for values of x from -1 to 3 .

(a) $y = -2x + 5$

x	-1	0	1	2	3
y					

(b) $y = -x - 2$


x	-1	0	1	2	3
y					

(c) $y = -2x$

x	-1	0	1	2	3
y					

(d) $y = 6 - x$

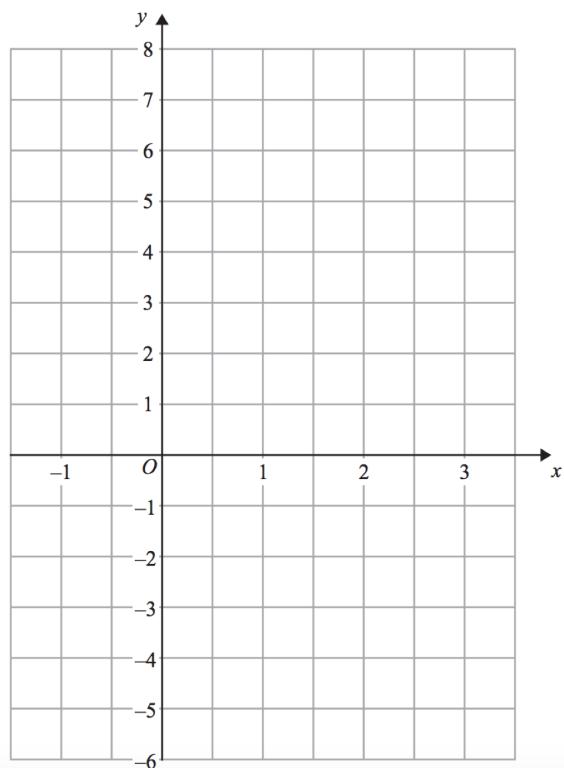
x	-1	0	1	2	3
y					

Question 6: For each equation, complete the table of values and draw its graph for values of x from -1 to 3 .

(a) $x + y = 3$

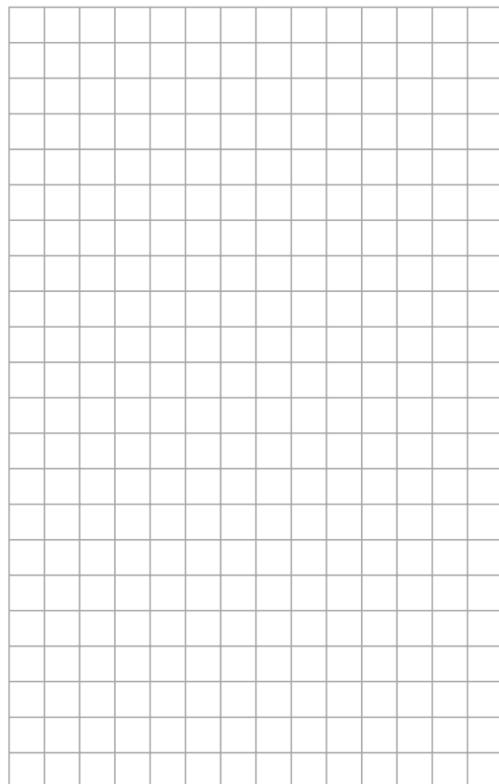
x	-1	0	1	2	3
y					

(b) $2x + y = 4$


x	-1	0	1	2	3
y					

(c) $x + 2y = -2$

x	-1	0	1	2	3
y					


(d) $2x - y = 4$

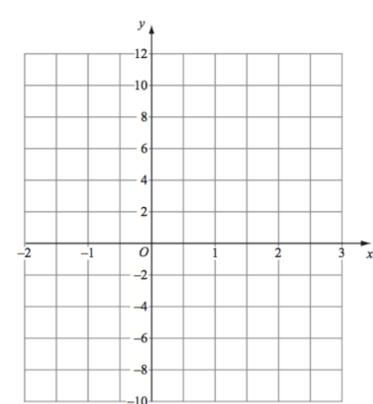
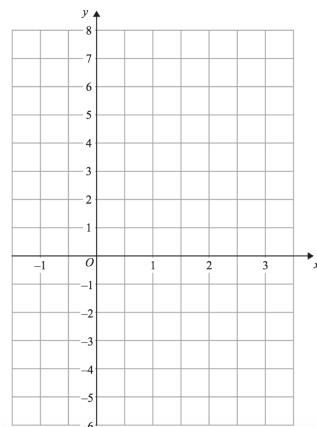
x	-1	0	1	2	3
y					

Question 7: For each equation, draw its graph for values of x from -2 to 3 .

- (a) $y = 2x + 3$
- (b) $y = 5x - 4$
- (c) $y = x - 3$
- (d) $y = 3x$
- (e) $y = \frac{1}{2}x + 3$
- (f) $y = -2x - 1$
- (g) $x + y = 8$
- (h) $2x + y = 12$
- (i) $x + 2y = 10$
- (j) $2x + 3y = 12$
- (k) $2x + 5y - 20 = 0$

Apply

Question 1: (a) Draw $y = x + 1$ and $y = 2x - 1$ on the same set of axes.

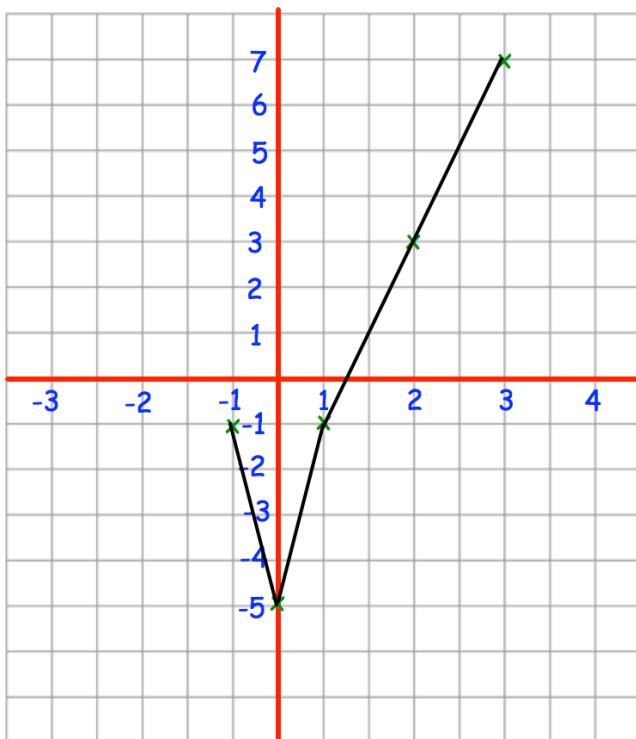


(b) Where do the two graphs intersect?

Question 2: (a) Draw $y = 3x - 4$

(b) Draw $x + y = 2$

The graph $y = 3x - 4$ crosses the y -axis at the point A
 The graph $x + y = 2$ crosses the x -axis at the point B
 O is the origin.

- (c) Write down the coordinates of the point A
- (d) Write down the coordinates of the point B
- (e) Find the area of triangle OAB.



Drawing Linear Graphs

Video 186 on www.corbettmaths.com

Question 3: Emma has tried to draw the graph of $y = 4x - 5$
Can you spot any mistakes?

Question: On the grid, draw $y = 4x - 5$ for values of x from -2 to 2 .

x	-1	0	1	2	3
y	-1	-5	-1	3	7